
NASA Technical Memorandum 102198

A Simplified Self-Adaptive
Grid Method, SAGE
C. Davies and E. Venkatapathy, Ames Research Center, Moffett Field, California

October 1989

RIASA
National Aeronautics and

Space Administration

Ames Research Center
Moffett Field, California 94035

A SIMPLIFIED SELF-ADAPTIVE GRID

METHOD, SAGE

Carol B. Davies* and Ethiraj Venkatapathy t
Ames Research Center

SUMMARY

The formulation of the Self-Adaptive Grid Evolution (SAGE) code, based on the work of Nakahashi

and Deiwert, is described in the first section of this document. The second section is presented in the

form of a user guide which explains the input and execution of the code, and provides many examples.

Application of the SAGE code, by Ames Research Center and by others, in the solution of various flow

problems has been an indication of the code's general utility and success. Although the basic formulation

follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of

the self-adaptive grid method for single, zonal, and multiple grids. Modifications to the methodology and

the simplified input options make this current version a flexible and user-friendly code.

1. METHODOLOGY

1.1 Introduction

Solution-adaptive grid methods have become useful tools for efficient and accurate flow predictions.

In supersonic and hypersonic flows, strong gradient regions such as shocks, contact discontinuities, shear

layers, etc., require careful distribution of grid points to minimize grid error and thus produce accurate

flow-field predictions. Frequently, the choice of the first grid topology does not adequately capture these

flow structures. It has been shown that an effective way of obtaining accurate solutions is by intelligently

redistributing (i.e., adapting) the original grid points based on the first flow-field solution and then com-

puting a new solution using the adapted grid. Many adaptive procedures have been proposed based on

minimization principles. Some apply only to simple grid topologies and others are extendable to multiple

and zonal grid topologies. The cost efficiency of grid adaptions in terms of CPU time depends on the basic

formulation of the adaptive-grid solver.

The self-adaptive grid procedure outlined by Nakahashi and Deiwert (1985) has evolved into a flexible

tool for adapting and restructuring two-dimensional (2-D) grids. The adaptive-grid methodology is based

on variational principles, but the problem is posed in an algebraic, unidirectional manner for multidimen-

sional adaptions. The procedure is analogous to applying tension and torsion spring forces proportional

to the local flow gradient at every grid point and finding the equilibrium position of the resulting system

of grid points. The multidimensional problem of grid adaption is split into a series of one-dimensional

(l-D) problems along the computational coordinate lines. The reduced 1-D problem then requires a tridi-

agonal solver to find the location of grid points along a given coordinate line. Multidirectional adaption is

achieved by the sequential application of the method in each coordinate direction.

*Sterling Software, Palo Alto, CA.

lEloret Institute, Sunnyvale, CA.

The tension force directs the redistribution of points to the strong gradient regions. To maintain

smoothness and a measure of orthogonality of grid lines, torsional forces are introduced that relate infor-

mation between the family of lines adjacent to one another. The smoothness and orthogonality constraints

are direction-dependent, since they relate only the coordinate lines that are being adapted to the neighbor-

ing lines that have already been adapted. This implies that the solutions are nonunique and depend on the

order and direction of adaption. Nonuniqueness of the adapted grid is acceptable since it makes possible

an overall and local error reduction through grid redistribution.

The Self-Adaptive Grid Evolution (SAGE) code has been built with many flexible elements that make

it user-friendly. The second section of this report is a user guide, which is independent of the first section

and can be used as a separate document. However, the nomenclature and details of the grid adaption

procedure within the code consistently follow the analysis, allowing the user to understand the code and

implement any individual changes, if desired. The user guide describes the input parameters and their

effects and the adaption procedure, execution commands, and subroutines, and provides many examples.

1.2 Formulation of Adaptive Grid Scheme

This section describes in more detail the analysis used in the SAGE code. As stated in the introduction,

the 2-D adaption takes place as a series of 1-directional adaptions. Figure 1 illustrates this concept: a flow-

field solution has been obtained using the unadapted grid shown in the top diagram, and the points in

this grid are now adapted to the flow solution. The first adaption, as shown in the bottom left diagram,

marches from left to right; adaption has already taken place along the first and second lines, and line three

is currently being adapted. The second adaption, as shown in the bottom right diagram, marches from

bottom to top, "adapting" the adapted grid. This example is an arbitrary order of adaption and marching

directions; any other order will also produce an adapted grid.

Figure 2 shows the current adaption line in more detail. The equation controlling the redistribution of

points along each line consists of two parts: (1) the 1-D approach utilizing tension spring constants and (2)

the addition of the torsion term. The tension spring constants (w) have the effect of clustering the redis-

tributed points into the high gradient regions. The torsion term provides a correction to this redistribution

to maintain continuity between sequentially adapted lines.

The current line to be adapted is j, and we are marching from bottom to top: this implies that lines j- 1

and j - 2 have already been adapted. For clarity, this analysis always uses j as the stepping (marching)

direction and i as the adaption direction. The arc length at A, s_, is defined (along j) as

8i+1 = 8i + _/(Zi+I -- Zi) 2 + (_,/i+I -- _,/i)2 (1)

A spring-like force is defined to act between each i and i + 1 nodes such that

w,A s_ = K (2)

where we, the spring constant, is a weighting function based on the flow gradient, and K is the resultant

force. In order to redistribute the points along a line with the minimum solution error, the adaptive proce-

dure defines the weighting function as proportional to the derivative of tile flow variable (Nakahashi and

Deiwert, 1985). In this formulation, w is defined as a fuuctioi, of the normalized flow gradient, f, such that

wi = 10+Afi _ (3)

where A and B are constants directly related to the grid spacing and are chosen to maintain the grid intervals

to within the limits (A surly and A SUAX) set by the user on input. They are defined in appendix I of this
section.

For this set of equations, with no torsion term, we can solve directly for A si. Taking the sum of both

sides of equation (2) gives

 As, = s,,,<,:= K 1/ l
l= i l= 1

giving
ni

K = 1Do,
/.=1

Substituting back in equation (2), we obtain

(4)

A 8i = 8maz_ / a)i

l= 1

(5)

In the SAGE code, this solution technique is used only along the initial adaption line. Continuing this

approach for successive line-by-line adaptions will not necessarily create a mesh that is sufficiently smooth

for input into computational flow-field codes. To ensure a more reasonable grid, there needs to be some

connectivity between adjacent j lines to provide a measure of orthogonality and smoothness. To provide

this communication, the concept of torsion is introduced that is a function of the j, j - 1 and j - 2 lines.

The torsion term is evaluated as -.q(si - s'i), where the torsion parameter r defines the magnitude of

this torsion force and s' defines its inclination (i.e., orthogonality and smoothness). The derivation of the

torsion term is described in a later section.

Equation (2) can be rewritten to represent the force balance, i.e.,

 oi(si+l - s,) - w. l(si - si-l) = 0 (6)

To introduce the torsion force to the system of equations, the torsion term is added to equation (6) to obtain

' - s_) = 0wi(Si+l - 8i) - o3i-1(8i - 8i-1) + "vi(8i (7)

which is rearranged to produce the coefficients of the tridiagonal matrix used to solve for si, that is

tOi_ l Si_ 1 -- (tO i -- 03i_ 1 "1- Ti) 8 i "4" _OiSi+ 1 = "l-iSli (8)

This equation is written for each interval along the adaption line, producing a system of (n/- 1) equations.

Since Sl and s,, are known, there are n_ - 2 rows in the matrix. This equation is solved iteratively until
_(n) __ .q(n-l) -3E?;,I., -, I< 10 ×

This system of equations is central to the adaption technique used in the SAGE code and most of the

description that follows pertains to deriving the coefficients of this equation.

1.3 Auxiliary Equations

1.3.1 Tension spring constant, w_. As described in the formulation, w_ acts as a tension force

between the interval (s_+l - s,) and can be imagined to be a spring (coaligned with the grid line)

connecting the two grid points. This tension parameter is defined in equation (3) as

wi= l+Affl

where .f_ is a function of the gradient of the flow variable, q, i.e.,

]_ f_-f,.i, and f,-Oqi (9)
f,.o_ - f,.;. 0s

The standard format of the user input flow-field file contains the conservative flow variables Q, as

defined in the plotting software package, PLOT3D, which assumes these flow variables are p, pu, or, and

e. Since the adaption is based on a scalar function q, this function can be evaluated as a user-specified

combination of flow variables Q. Pressure and Mach number also are included as adaption variables and are

internally computed, assuming Q to be the conservative flow variable. However, Q need not be restricted

to conservative flow variables, but can be any combination of user-specified flow variables that represent

the flow field.

To remove the unwanted oscillations from the discrete evaluation, f; is smoothed by adding a second

derivative term, i.e., f, = .75f, + .125(f_.1 - fi-l). By default, two smoothing passes are made, but

this can be overridden by changing the filter input control parameter. The weighting function, w_, is also

smoothed in the same way.

1.3.1.1 A and/3. As seen in equation (3), w is also a function of A and/3. These variables

are important elements in the self-adaptive scheme, since they control the size limits of the grid spac-

ing. A and/3 are computed from the user-supplied maximum and minimum allowable grid spacings

(A sMAX, A sMrN). These are relative values of mesh size and allow the user to specify the proportion

of largest to smallest A s in the final adapted grid.

The value of A is constant throughout the grid adaption and is given by

A 8 MAX
A - 1 (10)

As_tm

The value of/3 is computed (by an iterative process) for each j line to provide

input A sum = computed A s,_in

That is, the computed minimum grid spacing is equal to the user-requested value. Appendix I gives a

detailed description of the derivation of these two parameters. It should be noted that the derivation of/3

given in Nakahaski and Deiwert (1985) is inaccurate and that the formulation given in this appendix is a

corrected version.

1.3.1.2 Torsional effect on the evaluation of to. As noted earlier, the function of variables A and

B is to control the size limits of the adapted-grid-mesh spacing and, as shown in appendix I, they are

computed from the 1-D equation. The addition of the torsion term will somewhat alter the resulting grid

spacings, which now may not exactly correspond to the requested limits. To provide for additional control,

a weighting factor is applied to w such that wi = (1 + AfB)wt,, where wt, is the weighted tightness factor.

When equation (8) is solved, each A si is tested and if it does not lie within the requested spacing limits,

wt, will be computed; otherwise wt, = 1.0. In the case of A si < A SUtN, we need to relax (decrease) the

value of wi in order to produce a larger A si in the next iteration. For the case of a too large A si, w_ should

be increased. We therefore use the modifier

1(Asitot, = _- A s_tl/_
= --+1

+ 1 orwt, 2 As_AX

depending on whether Asi < A BMI N or A si > A S_AX. Equation (8) is therefore solved using the

modified values of to.

1.3.2 Torsion term, r(s; - s'i). As mentioned previously, the torsion term is added to the 1-D

equation to preserve the required smoothness and orthogonality of the grid. This term is constructed as

being analogous to the behavior of a torsion spring. The torsion force, T, relates the node at (i, j - 1) to

the node (i, j) and is proportional to the turning angle, 0 (see fig. 2), and is defined as

T_ = CO_j_l (11)

where C is the torsion spring constant. This force is thus added to equation (6), giving

toi(8i+l -- 8i) --toi-l(Bi -- 8i-1) "4" COij-I = 0 (12)

It is clear that by doing this, the equilibrium distribution of the grid points has been altered by the magnitude

of the torsional force term. The next step is to relate this torsional force to the previously deft ned parameters

on the adaption line. Figure 3 shows in detail the grid segment around the point (i,j) at A. Since 0 is

generally small, we can approximate 0, by (s_-s_)/[DA'[, where s_-s, is a function of the inclination angle

computed from the proportioned orthogonality and straightness vectors, as described later. In addition, we

assume that C is proportional to the maximum wi and the local aspect ratio of the grid cell. Hence we can

write

C =)_to"_(s_+l,j-I - s__l ,y-1) (13)
2IDA' I

where), is the proportional coefficient and is an input quantity.

The term 7- used in equation (8) can thus be defined as

_ktomax(Si+l,j-I -- 8i-l,j-l)

2IDA'I 2
(14)

The evaluation of [DA'[is given in appendix II of this section.

1.3.2.1 Derivation of s'. The influence of smoothness and orthogonality is directly included in equa-

tion (8) through s', and the evaluation of s' is an important element in this adaptive-grid procedure.

Figure3 showsthetorsionvector_ intersectingthelineAC at s_ such that

s'i = s, + AA' (15)

That is, A s_ = AA'. To evaluate AA' we first define the unit torsion vector _ associated with each nodal

point (i,j) [note that t acts from the point (i,j - 1)] such that

1

ti,j = _l[Ctei + (1 - Ct)_] (16)

where

Ct is the input parameter that requests the percentage of straightness to orthogonality

_ is an average straightness vector from (i, j - 2) to (i, j - 1)

represents the orthogonality vector between the j - 1 line and the node i,j and is a function of

the k, b and _z vectors defined below.

For simplicity, figure 3 shows each vector intersecting the j line in the interval (i, i + 1) ; however,

this is not necessarily the case. In general, we assume that t, intersects the j line in the interval (l, l + 1),

where the derivation of I is described in appendix II of this section.

1.3.2.2 Evaluation of vectors _, 8, and h.

1.3.2.2. I Straightness vector _

^ ^

The unit vector _i (direction ED in fig. 3) is deft ned as the sum of three straightness vectors, __ 1, d_, d_÷1,

where

and

Therefore,

1
d_, = 7--;-Z(xid_l -xi,j-2) and dr,

^

= _-_ (Yia- t - y;,]-2)

+ + c2,+,)

If the line j - 2 does not exist (which will occur at the second line from a physical boundary), it is
assumed that _ = _.

1.3.2.2.2 Streamwise vector _,

The unit vector k, (direction AC in fig. 3) is the streamwise vector from si _ si+ 1 along a j line. We
have

where
1 1

s=,- I'S;[(xi+l'l- z'd) andsv,- II'S;'(y'+lJ-v'a)

6

In order to maintaincontinuity in theneighborhoodof the side-edgeboundaries,51and k,_-t are
evaluatedasorthogonalto theedgeboundariesat i,, and i¢_. To provide a smooth transition into the

internal values of _, the adjacent 52,53, and 54 are amended by

3 1 1 1 1 3

_2 = _-_l + _-_2, 53 = _-_l + _-53, and _4 = _-51 + _-54

Similarly amended are 5ni-2 , 5ni--3 , and k,_-4 •

1.3.2.2.3 Normal vector fi_ = f(b, g)

The vector fi is a combination of two vectors:

+ (1 - (17)

where _i represents orthogonality to the j - 1 line, and bi the orthogonality to the j line. The parameter

t, proportions b and _zand is defaulted to 0.5, changing only at the upper and lower marching boundaries,

as discussed in the next section. Figure 4 shows the relationship between these three orthogonal vectors.

The vector ?z is defined as normal to _-i, the sum (average) of ki-i and _i along the j - 1 line such that

_'i = r=f+ rv, f

where
1 1

r_, = --_(s_, + s_,__)j_a and rv,- /-4:(sv, + sv,__)j-I
VZ

Since (z is normal to _ we have

zi = +(u,r+ uv,;3 where us, = -(r_,)j-1 and uv, = (r_,):_l

This normal vector representation, which includes the determination of either a right-handed or left-handed

coordinate system, is defined in appendix III of this section.

The vector b_ is more difficult to obtain since we need to find a line from (i,j - 1) that will be normal

to an _ segment of the j line. This value of I will not necessarily equal i, and can change for each iteration.

We define

"b, = +(b_,r+ by,g-)

where the direction cosines represent the normal vector to the average of 5t-i and St, along the j line.

These coefficients are derived in a similar manner to those of _, with (i, j - 1) replaced by (l, j), i.e.,

b_, = - (rv,)j and by, = (r_,)j

Appendix II of this section shows the derivation of I for a general vector ff acting from node (i, j - 1).

To obtain l for this case, we replace ff by bl, b2, until the correct bt is found. We can now find ti from

equation (16). It was explained earlier that s', occurs at the intersection of _ and g along the j line. This

intersection is not necessarily in the i to i + 1 segment and the appropriate gt segment must be obtained.

The analysis described can again be used to determine l, but in this case the general vector ff is replaced

by t. Since the calculation of I also calculates the length IAA'[, we can now evaluate s_ = sl +]AA'I v

1.4 Enforcement of Boundary Conditions

The ability to modify the adaption techniques in boundary regions substantially improves the flexibil-

ity of the adaptive scheme. The adaption domain is defined by the user and may be equal to, or a subset of,

the physical grid. A boundary is defined as a line juxtaposed to the limits of the adaption domain defined

by the user. There are two types of boundaries: marching boundaries (i.e., all points along the initial and

final adaption lines) and edge boundaries (i = i_t and i = ie_). Figure 5 shows an example of an adaption

domain as a subset of the physical grid, and illustrates the two types of boundary lines when marching in

the j direction. Note that if marching had been in the i direction, the boundary definitions would have been

reversed.

By amending the previously defined variables of Ct, t,_, and ,_ in the boundary regions, it is possible

to maintain physical characteristics at boundaries, allow for multiple passes, provide continuity across grid

boundaries, simplify multiple grid adaptions, etc.

1.4.1 Treatment of initial marching boundary line. If the initial adaption line is within the

physical domain, a smooth transition will be required across the starting internal boundary. As an exam-

ple, this situation occurs when adapting in zones: each zone has different flow features and the user may

wish to march up to a certain line using one set of parameters, then continue marching using a new set

of control values. The common boundary across the two zones must remain unchanged when starting the

second adaption pass. This feature is controlled by the input parameter, m 9. When mg> 0, a smooth

transition from external grid lines (e.g., those in the already adapted zone) to internal lines is created by

maintaining the same grid points along the initial line, and then proportionally introducing the input adap-

tion parameters. For example, when stepping to the second adaption line, we maintain as much straightness

as possible by setting Ct = 1 (see eq. (16)). At each subsequent line, Ct is gradually decreased until it

equals the user-supplied input value. The number of lines stepped before the full effect of the new param-

eters is felt depends on rag: Ct will linearly decrease until ra 9 lines have been adapted. An example of

this can be seen in figure 5, where jsL = 4 and m 9 = 5. The grid points along j = 4 will remain un-

changed while those along j = 8 will be fully adapted to the input control parameters. The code controls

the adaption parameters for lines in between. Consequently, we define a variable, rim, as

m9 + L, - J
n,,, = (18)

m 9

and then replace the value of C_ used in equation (16) by

Ct,, = Ct(1 - r_) + r_

At the same time, the value of), is increased to),(1 + 5 r_) (thus increasing the magnitude of the torsion

term) so that this amendment to Ct is effective. After m 9 lines, n._ = 0, thus returning Ct and), to their

original values. Note that the computation of 8 along the j,t + 1 line is a function of the jet - 1 line (if it

exists), and this will also help in the merging process.

1.4.2 Treatment at final boundary line. Another discontinuity will occur between the final adap-

tion line and any subsequent lines external to the adaption domain. It is not possible to use the same merging

concept described earlier. If requested (through the MARCH input parameter), the grid points in the re-

maining external lines will be redistributed with the same proportions as the points on the final adapted

line. This is not an adaption to the flow field, but provides a more aesthetic result.

1.4.3 Treatment of side-edge boundary. A smooth transition will also be needed at the side-

edge boundaries if the adaption domain is internal to the given grid, i.e., i,_ > 1 or iie,_ </max. Figure 6

shows an example where the fixed external grid spacing is denser than the first redistributed points, giving

a discontinuous effect across the boundary. If the input parameter _ _ 0, a modification is requested to

maintain some continuity of grid spacing across the side-edge boundaries. Consider the start-edge bound-

ary at i = ia along line j. We wish to enforce some value on wl that will give a value of A sl close to

the value of A si,,_ 1. To do this, we find the average wAs along the converged j - 1 line and replace wl

by wA s/A si,,_ 1j. This value remains fixed during the iteration, but is merged into the updated values of

w2, w3, and ¢v4. The end-edge boundary is handled in a similar manner.

There is often the need to improve the side-edge spacing, even when the adaption domain coincides

with the physical domain. If an adaption pass generates inappropriate side-edge spacing, a rerun of the

code with r_ set will attempt to improve the spacing by using the above technique. However, in this case

we do not have an external A s, and A s2j is used instead of A si,,_l d" This will usually prevent the spring

constants from pulling the lines too far off the boundary.

The variable r_ can be set to initiate computation for either or both side edges.

1.4.4 Treatment of orthogonality at boundaries. The code assumes that the grid lines should be

as orthogonal as possible to a marching boundary. To accomplish this, the normal vector _ is emphasized

over the straightness vector (by decreasing Ct) when close to a marching boundary line. For even greater

control, the coefficient t,_ is modified to emphasize either _ or b, depending on whether the initial-line

or end-line boundary is being considered. To ensure that the modifications to these torsion coefficients

sufficiently effect the computation, the value of), is simultaneously increased to accentuate the torsion

term. Orthogonality at side-edge boundaries has been covered earlier in the definition of _'.

Since not all marching boundaries are physical boundaries, an input option is available that will over-

ride this emphasis on orthogonality for either boundary.

1.5 Discussion

1.5.1 Flexibility and segmentation. The vectorial approach used in the analysis provides for

great flexibility in the use of the SAGE code. The user has complete choice of adaption direction and order

of sequential adaptions without concern for the computational data structure. Multiple passes are available

with no restraint on stepping directions: for each adaptive pass (or sweep) the user can choose a completely

new set of adaptive parameters. This facility, combined with the capability of edge-boundary control,

enables the code to handle multidimensional multiple grids. Zonal grids can be adapted while maintaining

continuity along the common boundaries. For patched grids, the multiple-pass capability enables complete

adaption. It was mentioned in the introduction that this adaptive technique does not produce a unique grid.

This nonuniqueness enables the user to choose the most appropriate solution to the grid adaption.

1.5.2 Limitations and future improvements. The current version of the code does not always

preserve input-wall boundaries. Each line is adapted in the computational domain and the points are in-

terpolated back to the physical domain; in certain applications, interpolation error from sparse grid points

or large surface gradients can prevent the wall boundary from resuming its initial shape. An option for

inputting or algebraically defining physical boundaries will be available in the next version of the code.

Another area that will be addressed is the special needs of applications with periodic boundaries.

These include C- and H-grids for compressor/turbine, rotor-stator problems. The requirement is that grid

points on the initial and final boundary lines be equivalent. Since this adaptive procedure is a marching

scheme, new iteration procedures will be required to enforce this condition.

1.6 Appendices

1.6.1 Appendix I: Derivation of A and B.

1.6.1.1 Calculation of A. We wish to relate A to the input values of AsMm and AsMAx. A is

constant throughout the entire mesh, and hence the 1-D relationship given in equation (2) holds. From

its original definition in equation (9), f,_a, = 1 and f,,i,_ = 0; therefore, from equation (3) we have

w,_,,_ = 1 + A and w_i,_ = 1. From equation (2) (rewritten as A si = K/w_) we can see that the minimum

A s will occur at K/wm,_. Similarly, the maximum A s occurs at K/wmi,_. We therefore wish to enforce

A SMm = K/(1 + A) and A sUAX = K. These can be solved simultaneously: by eliminating K we have

the expression given in equation (10)
A SMAX

A- 1
A s_m

1.6.1.2 Calculation of B. This calculation is more complex and B is found by an iterative procedure.

In addition, B will change for each j line. The objective is to determine which value of B will give the

minimum computed A s, equal to the requested minimum, A sum. For each value of/3 there exists a

minimum A s_. (An example of a plot of/3 vs. As,_i,_ is shown in fig. 7). We need to find/3 at the

requested A SMm. To do this, we assume an initial value of/3(= 1.0), evaluate w, and then solve for new

A s using equation (5). Although equation (5) is true only for the initial line, it is assumed to hold for all

j in order to simplify the/3 calculation. If IA 8MZN -- minA .s,<'01 is small, an acceptable value of/3 has

been found. If not, a new/3 is computed from B ('_+1) = B _'_) + A/300 w is reevaluated, and the procedure

repeated.

A/3(,o can be found from the definition

0
-_-=min(A s_) = lim
OU OB--*O

(A sum - minAsi C"))

A B(")
(19)

As mentioned in the calculation of A, we know that A s, is a minimum when wi = 1 + A, and by

substituting this in equation (5) and differentiating, we obtain

0(+)o_min(Asi) - 1 + A OB (20)

10

where

Weknow that
/=I Wl

a (_) 1 a¢

Hence, the next step is to evaluate c9¢,/c9B. With this definition of ¢, we can take the summation sign out

of the differential and obtain

0t3 = w, =

1+
l=l

ni - B -
fz logft

: -.AE
/=1

Equation (20) can now be solved, and after substituting for

8max
F,(-) :
l:l tol A s,.,,,(1 + A)

from equation (5), we obtain

?,'lo97
min(Asi) - A(l + A)[min(Asi)]2_ w2

8max l= 1

Finally A B can be obtained from equation (19), giving B.

After the calculation of A and/3, the correct distribution of to is available for the general solution

procedure.

1.6.2 Appendix II: The intersection of a vector, if, with the streamwise vector, g. This tech-

' Tonique is used to obtain the b vector used in the orthogonality term, and to find the location of si.
!determine s i we need the streamwise segment in which the torsion vector t from the grid point (i,j - 1),

intersects the j line. To evaluate the direction cosines of the b vector, we need to find which segment

(l --_ l + 1) along the j line will contain a normal vector acting from (i,j - 1). In both cases, we are

dealing with the adaption at a nodal point (i, j) and the technique for finding l is the same.

Figure 8 shows a given vector vi acting from node (i, j - 1) and intersecting gin the segment (l, j)
(l + 1,j). D is at the point (i,j - 1) and/)A' = IDA'I_. AC acts from (l,j) ---,, (l + 1,j) and

KC = IACI_. Since _'i intersects more than one g(as seen in the figure), we need to compute IAA'I for

each gt--l.2,3., until IAA'[< A st. When this condition is satisfied, l is the index of the correct streamwise

segment, and [AA'I and IDA'I are also available from the same computational process.

To find [AA'[, we have (using vector addition)

IAA'I_ = _D + IDA'I_, (21)

11

Fromits physicallocation,wehave

tCD = (x_.___ - z_,j)i'+ (y_j-i - Ytj) f

= a_,_'+ %,f

We can, therefore, rewrite equation (21) as

IAA'I(s_,_+ s_,._3 = a_,_'+ %]'+ IDA'I(v_,_'+ v_,.13

and, by equating coefficients of i_and]_ and solving the set of simultaneous equations, we obtain

i.e.,

IAA'I = azLv_' -- a_lv_'

8xlVyi -- 8y_Vx_

IAA'I is computed forl = 1,2,3,.. until IAA'I < Ast.

At this point, IAA'I and l are available. IDA'I is now

[DA'I =]AA'ls_,
Vxt

Note: if v_, is very small, use

(22)

found from one of the simultaneous equations,

- a_, (23)

IDA'I = IAA'Is_, - %
9y_

1.6.3 Appendix II1: Definition of normal vectors. The handedness of a coordinate system is

essential to define a unique normal direction and can be found by taking the cross-product of any two

vectors acting at a point in the mesh. Choose any point in the center of the mesh (i,j) and define two

vectors, if1, from (i,j) --* (i + 1 ,j) and v'2 , from (i,j) _ (i,j + 1). We know that

ffl Xv'2 =(ali'+ hi]3 ×(a2r+ b2.13 = (alb2 - bla2) f; = c/_

If c is positive, we have a right-handed system, and if negative, a left-handed system. If c is found to be

very small, another internal mesh point is chosen to ensure that numerical error is not a factor.

The normal, A7 to a vector V = ai'+ b_ is defined as N = +(-bi'+ a]-), where the sign is chosen

positive for a left-handed coordinate system and negative for a right-handed system.

2. SAGE USER GUIDE

2.1 Overview

The SAGE code is based on the self-adaptive grid method developed by Nakahashi and Deiwert

(1985). This guide contains information that will enable the user to run the code with little knowledge of

the mathematical concepts employed in the development of the adaption technique. Included is a detailed

description of the input-control parameters, along with routine descriptions, nomenclature, etc. The code

stands alone and has been run on many computer systems. Users wishing to understand and/or amend the

code can find the details of the mathematical background in the first section of this document.

Briefly, the code reads two data files: one that contains the coordinates of the grid (x, y) and another

that contains corresponding flow-field variables q. (It is assumed that these datasets are formatted as defined

in the plotting software package, PLOT3D.) The grid is then adapted with respect to the flow-field variables

as described by a control-file input by the user. The code returns the redistributed grid points and the

corresponding interpolated flow variables in the same PLOT3D format.

The 2-D adaption takes place as a sequence of 1-directional adaptions. Along each grid line, (:r, y)

is transformed to a 1-D arc-length variable, s. An input-control variable determines the direction of the

adaption. The redistribution of points is controlled by two parameters related to tension and torsion springs,

and by the minimum and maximum allowable grid spacings. Figures 1 and 2 show examples of the grid

adaption process. Assuming that adaption steps in the j direction, the tension-spring constants, ta, are

evaluated at each point (i) along the current line (j), i.e., _ = f(s_./), and are a function of the gradient

of the user-chosen flow-field variable. The torsion parameter _ = f(sij, sij_l, s_j_2) is the link between

the current line and the previously adapted lines, thus providing control of orthogonality and smoothness

constraints. A system of (n,. - 2) equations is then developed for the constant j line and solved as a

tridiagonal system. Once the adaption is completed for the current j line, the code steps to the next j line

(either forward or backward) and repeats the same procedure. If the user requires adaption stepping in the

i direction, the same procedure is carried out along lines of constant i.

It should be noted that by decoupling the 2-D system, the solutions are no longer unique. Backward

or forward stepping will produce quite different grid solutions.

There are six major steps taken in the code:

1. Input of three data files: initial grid, flow-field solution, and user control parameters.

2. Initialization and reorganization of data for computational purposes.

3. Adaption along start line using 1-D technique.

4. For each subsequent j line:

(a) computation of variables that define torsion and tension constants, and hence coefficients of the

tridiagonal matrix equation (as defined in Section 1);

(b) iterations to obtain new values of s, and hence (x, y).

13

5. Step4 repeateduntil all requested lines are completed.

6. Output of new grid and interpolated flow-field files in original format.

Following this introduction are sections describing the user input parameters, execution commands,

explanation of output messages, contents of each subroutine, a nomenclature set that relates code names

to analysis variables, and a list of the major variables. Finally, many examples are given, along with input

parameter lists, and grid and flow-field plots.

2.2 Execution of the SAGE Code

The following is an example of the command file required for the VAX/VMS system to assign the

input and output files of the code. For other computer systems, users must appropriately assign the six
files.

$ASSIGN SAGE.INP FOR005

$ASSIGN SAGE.OUT FOR006

$ASSIGN XY.GRD FOR007

$ASSIGN Q.FUN FOR008

$ASSIGN XY.OUT FOR010

$ASSIGN Q.OUT FOR011

where SAGE.INP contains the user-supplied adaption control variables, and SAGE.OUT is a message file

output by the code.

The remaining files are in PLOT3D binary:

XY.GRD contains the initial grid points

Q.FUN contains the flow-field variables to which the grid is to be adapted

XY.OUT contains the adapted grid points

Q.OUT contains the flow-field variables interpolated on the adapted grid

PLOT3D unformatted files

The following are the read statements used for the binary files:

14

XY.GRD:
READ (7) IMAX,JMAX
READ (7) ((X(I,J),I=1,IMAX),J=1,JMAX),((Y(I,J),I=1,IMAX),J= 1,JMAX)

Q.FUN:
READ (8) IMAX,JMAX
READ (8) FSMACH,ALERE,TIME
READ(8) ((Q(I,J,N),I=1,IMAX),J=1,JMAX),N=1,NDIM)

where

IMAX = thenumberof pointsin thei direction in the grid file

JMAX = number of points in the j direction

NDIM = number of Q variables (default = 4)

As seen in the above format, four flow-field variables are expected in the Q file. PLOT3D preassigns

p, pu, pv, and e, but since the SAGE code requests only the index of the function, any variables may be

stored. Note that it is possible to handle more than four flow variables by changing NDIM in the parameter

statement at the beginning of each subroutine.

Currently, the maximum dimension of IMAX and JMAX is 232. This value is set in the parameter

statement at the beginning of each subroutine, and hence can be changed by a single edit command. Note

that, since data may be switched internally, all 2-D arrays must be square and be greater than or equal to

the largest of IMAX and JMAX.

FSMACH, ALP, RE, and TIME are not used in the code and may contain dummy values. They are

part of the PLOT3D package and are displayed on the output plots.

XY.OUT and Q.OUT are written in the same format as the input GRD and FUN files.

2.3 User Input Parameters

SAGE.INP is the input-parameter control file. The grid adaption is based on the user's choice of

these parameters, which are listed and briefly described below. A more complete explanation is given in

the subsequent section. Although 23 control parameters are described, generally only a few need to be

changed from the default value. Values in parentheses indicate default values.

In this version of the code, SAGE.INP is in namelist format $NAMEL. Namelist format implies that

the variable need be input only if it is different from the default value. Since most control parameters main-

tain their code-generated values, namelist is a convenient method for the user-input control file. Although

namelist is now a standard Fortran feature, users without this capability will need to change the input-read

statement in the routine "INITIAL" and must ensure that all 23 parameters are given input values.

15

If more than one adaption pass is to be made (for example, 2-directional adaption), subsequent adap-

tions can be made on the "adapted" grid by linking together up to 10 sets of SNAMEL within the same

SAGE.INP file.

Before describing the input parameters, some terminology needs to be clarified.

The term physical domain is used to reference the complete grid defined by the input grid file. Adaption

domain is the part of the grid, as defined by the control file, that is to be adapted. These two domains can be

equivalent. (See fig. 5, where the shaded area represents an adaption domain within the physical domain.)

The term adaption direction is used to define the 1-D line along which adaption takes place. The

marching (or stepping) direction is the direction in which the adaption steps after each 1-D line adaption

has taken place. In the case illustrated in figure 5, the stepping direction is j. The code makes no a priori

assumptions of these directions until the control file has been read, since a user parameter defines whether

i or j is the stepping direction.

Frequent reference is made to edge boundaries. It is assumed that two marching boundaries and two

side edge boundaries exist along the outside limits of the adaption domain. Their definition depends on the

stepping direction of the adaption: the marching boundaries are the first and last lines to be adapted; the

side-edge boundaries occur at the first and last point of each adapted line. For example, in figure 2 with

adaption in the j direction, the start marching boundary occurs at j = j_t; however, if adaption is in the i

direction, this boundary will be at i = i_t.

2.3.1 Parameter control file, SAGE.INP.

$NAMEL

IST: (1)

IEND: (IMAX)

JST: (1)

JEND: (JMAX)

JSTEP: (.TRUE.)

INDQ: (1)

IQ(6): (0)

RDSMAX: (2.0)

RDSMIN: (.5)

CLAM: (.01)

CT: (.5)

NFILT: (2)

INTER: (2)

MGSTEPS: (0)

NEDGE: (0)

first adaption line in i direction

last adaption line in i direction

first adaption line in j direction

last adaption line in j direction

=.TRUE. for adaption to step in the j direction

=.FALSE. for adaption to step in the i direction

indicates adaption flow-field variable q,

default is first index, density

enables a combination of q variables to drive the adaption

proportioned maximum allowed A s, A SUAX(>_ 1.0)

proportioned minimum allowed A s, A sum(<_ 1.0)

coefficient of torsion parameter constant,

(. 05 - .000001)

proportion of "straightness" to "normal" for torsion

parameter

number of passes to smooth q and to

2- or 3-pt interpolation

number of lines to full adaption in the stepping direction

controls side-edge adaption

16

MARCH: (.FALSE.)

ADD: (0)

LSTADD,LENDADD

NOUP: (.FALSE.)

SAVE: (.TRUE.)

ORTHS (.TRUE.)

ORTHE (.TRUE.)

$

1=both edges, 2=start edge, 3=end edge

=.TRUE. to extrapolate last adapted line throughout

the remaining flow

=integer to increase number of mesh points in requested

range

requested range, used only if ADD=/0. If omitted,

and ADD is set, the complete adaption range is assumed

.TRUE. suppresses adaption, useful for adding points

with no adaption

=.TRUE. to store data for PLOT3D at completed adaption

=.FALSE. to suppress the O/P of the adapted files

setting this to .FALSE. will suppress orthogonality at the

start marching boundary

similarly, .FALSE. suppresses orthogonality at the end

marching boundary

For the first adaptive effort, try using the default values and, if necessary, change the parameters that

physically describe the system: for example, the boundary lines (IST, IEND, JST, JEND) and the adaptive

flow-field variable, INDQ.

RDSMAX, RDSMIN, and CLAM are the first variables to investigate if this first pass is not satis-

factory. If a catastrophic error occurs, significantly change CLAM. Note that CLAM has no effect on the

initial line.

2.3.2 Explanation of user-controlled parameters.

ADD. When this is set, the number of points within the requested range (see LSTADD,LENDADD)

is increased. For example, if ADD=2, two points will be added between each consecutive grid point in the

requested interval. Adding occurs only in the adapting direction and no___[the stepping direction. Be sure

that the defined dimensions are not exceeded as a result of adding points.

CLAM, (,_), controls the magnitude of the torsion parameter constant, 7-, which in turn controls the

relative influence of the torsion term with respect to the tension term. This is the most difficult parameter

to ascertain. Its order of magnitude can lie anywhere between 10-5 and 5 × 10-t. A value of zero will

turn off torsion, and the system of equations for the adaption line will be independent of its neighbor. A

larger value of CLAM will decrease the influence of the flow-field gradients, and will therefore generate a

smoother but less adapted grid. The magnitude of _, is related to how close the initial grid follows the high

gradient regions.

CT, (G'_), is a variable that represents the direction of the torsion term, whereas _, is the magnitude in

this direction. 0 < C_ < 1, where G't = 0 emphasizes orthogonality and C_ = 1 emphasizes "straight-

ness." The default of 0.5 places the torsion vector halfway between. This value is suitable in most cases,

but may cause problems when side boundaries are concave. (See the example section.)

17

INDQ indicateswhichof sixpossibleflow-fieldvariable(s)will drivetheredistributionof gridpoints.
Given thestandardPLOT3Dformat

1 _ density,p
2 _ x-momentum, pu

3 _ y-momentum, pv

4 _ stagnation energy, e

In addition, two more options are computed by the code (assuming ideal gas and the above order of

variables)

5 _ pressure, p

6 _ Mach number, M

The user will normally choose to adapt to the variable that is considered most representative of the

flow-field features. However, if each flow-field variable demonstrates different features, it may be advan-

tageous to combine them to bring out these same features on the adapted grid. In this case, set INDQ=0

and input IQ.

(The user may increase the number of variables by changing the value of NDIM from its default value

of 4. In this case, the code assumes that indices 5 and/or 6 will contain user data, and that pressure and

Mach number are indexed by NDIM+I and NDIM+2, respectively.)

IQ is an array of six (NDIM+2) variables which are only used when INDQ=0. They allow the user

to adapt to more complex functions. The order of the six variables corresponds to the flow-field variables

(i.e., IQ(2) represents pu). The value of the index represents the contribution of the variable to the adaption

variable. For example, IQ(1)=I, IQ(5)=l [i.e., (1,0,0,0,1,0)] will produce an adaptive function of ½(p+ p),

and IQ(1)=2, IQ(5)=3, IQ(6)=I will produce _p + 63-p+ g-M.1As another example, (1,0,0,0,0,0) is the same

as INDQ=I.

INTER indicates whether to use a linear or quadratic Lagrange polynomial for interpolations. In-

terpolation is frequently required throughout the code: for example, each time a new si is computed, the

corresponding flow-field values are interpolated.

IST, IEND contain the indices defining the first and last boundary lines of the adaptive domain in

the i direction, and, similarly, JST,JEND define the j direction. These variables define the limits of

the adaption domain, and they must lie within the input grid boundaries of the physical domain, i.e.,

I<IST, IEND<IMAX and I<JST, JEND<JMAX. Remember that the i and j directions always represent

the first and second indices on the input XY.GRD file.

Reversing the adaption direction. Setting IST>IEND and/or JST>JEND will reverse the direction of

the adaption. The reversing of the data is handled internally and is imperceptible to the user. Reversing

the stepping direction will completely change the resulting grid, since the redistribution along the initial

line, as well as the connecting torsion spring angles, will be quite different. Reversing the order in the

nonstepping direction will have no effect on the solution, since the solution along a line is independent of

18

theorderof points. However,for meshesthatcontainvery largeandvery smallAsi, numerical accuracy

may be influenced by the adapfion direction. There is a more detailed description of data structure at the

end of this section.

Figure 5 shows an example of these initial boundary lines where the input physical mesh has a dimen-

sion of (15,12) and contains an internal adaption domain. If the i direction is adapted from left to fight,

then IST=3 and lEND= 12; however, if adapting from fight to left, then IST= 12 and IEND=3. Similarly for

the j direction: JST=4,JEND= 12 when adapting from bottom to top, and JST=I 2,JEND=4 when adapting

from top to bottom. Note that these values are independent of JSTEP.

JSTEP controls the direction of stepping. JSTEP=.true. implies that stepping will occur in the j

direction, i.e., on each j line, all i points will be redistributed before stepping to the next j line. Conversely,

JSTEP=.false. will produce stepping in the i direction, redistributing all j points before stepping to the next

i line.

LSTADD, LENDADD. These are input only if ADD:/0 and if only a portion of the adaption region

is to be expanded. If they are not input and ADD:/0, the default is the entire adaption region. If ADD=0,

their value is ignored.

MARCH. If the last line to be adapted (7,,_) is within the physical grid boundary, a sharp discontinuity

may show between this adapted line and the juxtaposed nonadapted line: setting MARCH=.true. requests

realigning the remaining nonadapted lines (i.e., lines from j_,_ + 1 to j,_). This is no___ttan adaption: the

grid points are redistributed as proportional to the final adapted line.

MGSTEPS provides continuity when adaption starts at a line internal to the physical boundary. It

enables the code to start with no adaption on the first line (i.e., the original distribution is retained) and

linearly increases the adaption effect until, after MGSTEPS lines, full adaption occurs. At full adaption,

the values of Ct and),, etc. will coincide with the input values. If MGSTEPS =1, no adaption will be

performed on the first line, but full adaption occurs along the second line. As an example, see figure 5. If

JST=3 and MGSTEPS=4, no adaption will be performed on line 3, and full adaption will occur on line 7.

See the boundary enforcement section in the analysis for details.

NEDGE is a flag that introduces internal control of side-edge boundaries. Side-edge conditions fre-

quently need special handling. For example, when the side edge of the adaption domain lies internal to the

physical grid boundary, the side-edge spacing should be continuous with the spacing in the external region.
Even when the two boundaries coincide, the default value of zero may produce unsatisfactory results. In

either case, NEDGE can be set and the code will _ to improve the side spacing. Depending on the case,

both or only one of the side spacings may need improving. NEDGE=I requests both edges, NEDGE=2

requests start edge only, and NEDGE--3 requests end edge only.

NFILT is a "filtering" variable that smooths the gradient of the input q data. The default will generally

suffice; however, if the flow-field variables are very discontinuous, it is necessary to increase the value of

NFILT. For adaption to raw-input flow-field data, set=0. The tension parameters are also smoothed under

the control of this parameter.

19

NOUP. This variable is convenient if the user would like to increase points within the grid, using the

interpolation provided by ADD, without performing any adaption.

ORTHS,ORTHE. The code assumes that orthogonality to the marching boundaries is a desirable

feature. However, for situations when this assumption is invalid, ORTHS and/or ORTHE can be changed

to false, and adaption will be fully determined by the flow.

RDSMAX,RDSMIN control the density of the redistributed points and are the maximum and mini-

mum allowable grid spacings. They are input as proportioned values and are changed to physical variables

internally, i.e., ASMAx X Sma_/(ni -- 1) and As_zN x s,,,,_/(ni -- 1), where ni is a constant equal to

the total number of points along the adapted line, and s_,_ is the length of the current adaption line. This

implies that RDSMAX ___ 1.0 and RDSMIN _< 1.0. (If both are set to 1.0, a totally uniform grid will

result.) As an example, RDSMIN=0.5 will prevent a converged A s from being less than half the average

step size. (Since many factors influence the distribution of grid points, this control is not absolute.) Note

that, since the adaption along the first line is not influenced by torsion (CLAM), this initial line will present

a clearer picture of the effect of RDSMAX and RDSMIN.

SAVE. This is useful when more than one adaption pass is made in the same program run. The output

grid and function files are large, and setting SAVE=.false. on any set of $NAMEL will suppress the output

for that particular adaption. If SAVE=.true., each subsequent output set of XY.OUT and Q.OUT files will

be assigned to different unit numbers. As stated in the execution section, the first output set is assigned to

units 10 and 11. The second output set will therefore be units 12 and 13, etc.

Comment on internal reordering of data. The choice of stepping and adaption directions is a powerful

feature in this code. The order of the (z, y) variables is determined by the input grid file, i.e., the first index

represents the i direction and the second, the j direction. The user chooses the values of IST, JST, IEND,

JEND, and JSTER based on the physical grid; however, in the code itself it is always assumed that the

stepping direction is j, and that both i and j increase monotonically. Since the user can request adapfion

in any order, it may be necessary to internally rearrange the data in the physical domain (both grid and

flow-field input files) to correspond with the assumptions. This rearranging is imperceptible to the user.

Rearrangement takes place for each element (i, j) of z, y, and q if

1. ist > i_,,,/, then each index (i, j) is replaced by (imax - i, j)

2. js_ > j,,,a, then each (i,j) is replaced by (i,jmax - j)

3. adaption is requested in the i direction, then _i,j and Yia are interchanged, and qij _ qj,i

At this point, the code also organizes the data such that the index parameter i along the adaption line always

runs from 1 to r_ (even if i_ -_ 1), where n/= i,,_ - i_ + 1. However, j is not changed and runs from j,t

to je,_.

2O

2.4 Output Message File

The SAGE.OUT file contains messages that may help to explain what has happened. At the end of

each adaption, "ADAPTION n COMPLETE" indicates that the program was able to run to completion,

and that XY.OUT and Q.OUT files have been created.

NUMBER OF POINTS INCREASED FROM nl TO n2. (Informational)

If the ADD option has been input, this message gives the new dimension of the mesh.

ADD OPTION EXCEEDS DIMENSION. (Critical)

Self-explanatory. Increase array dimension by substituting for 232.

UNABLE TO DETERMINE LHS OR RHS. (Critical)

To compute the vectors required in the calculations, the mesh is tested to see if a left-handed or right-handed

system is required for the stepping direction. If this error occurs, check the initial input grid.

NO CONVERGENCE ALONG INITIAL LINE, ERR=a1. (Warning)

The initial line is a 1-D adaption only. This may not be a catastrophic error, especially if al is small;

however, the adaption may not be completely satisfactory. The only control parameters that affect the

initial line are RDSMAX, RDSMIN, and NEDGE.

NO CONVERGENCE ON LINE j, ERR=a2. (Warning)

This message is only a warning and adaption continues. Even several of these messages may of be no

concern as long as a2 is small. If adaption is successfully completed, then check new mesh to see if it is

acceptable.

NO CONVERGENCE OF B ON LINE j, B SET TO a3. (Warning)

This message is only a warning and should have very little effect on the final grid. When B does not

converge, it is set equal to the value of B at line j - 1.

S IS NON-MONOTONIC ON LINE j. (Critical)

This message will terminate the program. It indicates that the values of s_ at the completion of the iteration

on line j are not monotonically increasing, thus implying cross-over of points. Since this is unacceptable,

the program outputs the data. It is then possible to see the plots and reevaluate the control parameters.

21

2.5 Outline of Each Subroutine

The SAGE code consists of the following subroutines, listed here in alphabetical order. Argu-

ments shown in boldface are computed within the subroutine. Some of the routine descriptions refer to the

analysis section of this document.

ADDPTS(ADD,LSTADD,LENDADD,IINVERSE)

This routine is called by MAIN if ADD-_ 0 on the input parameter file. Extra points (depending on ADD)

are inserted between each of the input nodal points within the range LSTADD to LENDADD, by a linear

interpolation.

ADDV(COSX 1,COSY 1,A 1,COS X2,COS Y2,A2,COSX,COSY)

This is a utility routine. The direction cosines of two unit vectors (COSX 1,COSY 1) and (COSX2,COSY2)

are input parameters. The routine computes the direction cosines (COSX,COSY) of the unit vector repre-

senting the sum of the input vectors, proportioned by the coefficients A 1 and A2.

CROSSV(XT, YT, XT1 ,YT1 ,DST, CO S V, DA P, AA P, IC R OSS)

Appendix III of section 1 contains the analysis used to develop this routine. COSV is the array containing

the direction cosines of the vector 17, defined in that appendix. (XT, YT) are the coordinates of a j line,

(XT1,YT1) are the coordinates of its j - 1 line, and DST is As along j. The routine computes s - s t

(i.e., AA') and DA', the distance between s' and the corresponding node at (i, j - 1), as shown in figure 3.

ICROSS is the array containing l, indicating the intersecting segment for each COSV.

DLENG(JL)

When NEDGE is set, the tension parameter w is amended at the edges (i.e., at IST and IEND) to improve

edge-boundary spacing. This routine computes DLENGS and DLENGE, which are used in the edge w

calculation (by routine WTEDGE). The values of DLENGS and DLENGE depend on whether the grid is

defined outside of the adaption domain. JL indicates which j line is needed.

EDG EM G(VAR,L1 ,L2)

This is a utility routine. For various reasons, the value of some variables at the IST and/or lEND edges are

overridden. In order to blend this different value into the calculations, this routine will merge the new value

into the next three grid locations. VAR is the variable, L1 is the location to start the first-edge blending,

and L2 is the end edge.

FBAR(J)

This routine is called once for every j line. The A s and the gradients Oq/Os are computed at the input

grid points and stored in E The routine GETB is called to find the value of B for this j line, based on the

input grid. For lines other than the first, initial guesses for the s distribution are extrapolated from the

converged s_ along j - 1 line. Since these do not correspond to the input points, new local values of x and

y (XJ,YJ) are interpolated. Routine INTF is called to interpolate the value of F at these new grid points

and to compute the normalized form of F, i.e., FB.

FILTER(VAR,NIPTS,NFILT)

This routine is called to smooth Oq/Os and w. NFILT is the number of smoothing passes (default=2).

GETB(J)

This routine computes the value of B used to evaluate w. B is found by an iterative process and is said

to converge when the minimum requested A s equals the computed minimum A s. The analysis for this

routine is given in appendix I of section 1.

GETDSM

This routine computes tot, the modifier of w that is set when any computed A s lies outside the requested

range.

INITIAL(NOMORE)

This routine sets all the default values and reads the input parameter file. When necessary, the grid points

and corresponding flow-field data are rearranged to correspond to the data organization assumed by the

analysis. In addition, it is determined if the coordinate system is left-handed or right-handed. If no more

adaptions are requested, NOMORE is set and returned to the main routine.

INTF(F, FB,SN,SMS,NPTS,IFL)

This routine interpolates to find] (FB) at the new si (SN), based on the input values of f (F) and the

midpoints (SMS) of the input s array. This means that throughout the code,] is evaluated at the current

values of s, and f is evaluated at the input grid points. IFL is a flag that indicates that no interpolation is

required.

LA G C O F (SN E W, SARR,NPTS ,M,P1,P2,P 3)

This routine computes the Lagrange coefficients P1, P2, and P3 for a point SNEW with respect to the

input s array, SARR. These are used by the calling routine to interpolate for the variable at SNEW. First

or second order is available, based on INTER. M is the associated index for P1, and will reflect a forward

or backward interpolation, depending on the location of SNEW within the interval.

LINE1

This routine solves for the adapted values of si along the initial line j = j,t. Since the torsion term is zero

on this line, the A s_ are computed from the 1-D approach.

23

MARCHES

If the final adapted line is internal to the physical boundary, this routine will redistribute the points on the

remaining j lines, based on the distribution along the j,,,a line. This is performed only on request by the

user and is not an adaption to the flow field. However, it will prevent the discontuity between the last

adapted line and the outer boundary.

OUTPUT(NADS,OK)

OUTPUT is called after all lines have been adapted. Data is reorganized to conform with the input mesh

structure and then written into the grid and flow-field files. NADS indicates which adaption number has

been completed (maximum of 10 sets) and OK indicates that a normal completion has been reached. This

routine is also called if s becomes nonmonotonic (OK=false). In this case, the new mesh points that have

been computed are output to help the user determine the problem.

SETUP(J)

SETUP computes the direction cosines of the vectors ff and Eused to evaluate the torsion vector t. Also

computed are the modified values of torsion parameters Ct,),, and In.

SOLUT(J,OK)

When SOLUT is called, all variables have been computed that are needed to obtain the new distribution

of si. The coefficients of s, (see eq. (8) in the first section of this report) are set up in a tri-diagonal matrix

and solved for si. Interpolated values of wi are found at these new s_ and an iteration is performed until
(,--1)

Z](sl ") -- _i I is small or too many iterations have been performed. In both cases, a check is made to

see if all the s, are monotonic. If so, the program continues; if not, the flag OK is set to false, causing the

program to output the current grid and terminate.

SWAP

This routine is called if jst > j,_ or ist > i,,_. The order of (i, j) in the z and _ input matrices are

reorganized to ensure that internal computations have monotonically increasing indices.

SWAPXY

Since the internal computation assumes that j is the stepping direction, this routine is called to interchange

z, y, and q when stepping is requested in the i direction.

TORSION(J)

This routine computes the direction cosines of the normal vector _ = f(b, _) and subsequently the torsion

vector t = f(_, _). The routine CROSSV is called to find the intersection of t and the j line from which

s'¢ can now be evaluated. Finally, a check is made to ensure that s' monotonically increases. If it does not,

the code attempts to correct this, but any severe problems will cause the code to terminate in the SOLUT
routine.

24

UNITV(X 1,Y 1,X2,Y2,DIR CX,DIRC Y)

This is a utility routine that finds the unit vector from (X1,Y1) to (X2,Y2). DIRCX and DIRCY axe the

direction cosines of this vector.

UPDATE(J)

UPDATE is the last routine called in the iteration loop for the current j. Newly adapted values of si have

been found. The values of x, V, and q at this new distribution are interpolated and replaced into the matrices

containing the physical mesh. In addition, these values of x and V are stored locally in XJ 1 and YJ 1 for

the next line adaption.

VM ER G E(D IRV, LST, LEND)

This routine performs the same function as EDGEMG, but with a vector quantity (DIRV) in place of a

scalar value. LST and LEND indicate which value of DIRV needs to be merged into the next three points.

WTEDGE(J)

This routine is called by MAIN when NEDGE modification is requested. The edge values of the tension

parameter at the next j line are a function of the average _oA s along the just completed adapted line. This

routine calls DLENG to obtain the appropriate value of edge A s on the next line, computes the average

_vA s on this line, and evaluates WDS and WDE to be used in routines LINEI and SOLUT.

25

2.6 Nomenclature

The following is a list of variables used in the formulation of the SAGE methodology. The boldface

characters represent the corresponding variable name used in the Fortran code.

A,B

Ct

Ct.
b'; (b_,, b_,)

, (d,,d_,)

e'; (ez,,ey,)

f
f,,.,,,
?
i

i rnax, j max

i .t , j .t

i,M , j,_

l

mg

r_

nj

; (n,, r_,)

q

¢; (rx,, r_,)

8

8"; (8x,, Sy,)

,S max

8 I

A,si

A 8MIN_ ABMAX

A 8rnin, A 8max

7-'

E (t,_,,t_,)

t_

if; (ux,, u_,)

x,y
),

W

Wt

7"

constants used to compute w, (A,B)

input proportion coefficient for torsion, CT

modified value of Ct, CTM

normal vector to j line; direction cosines of b', COSB

straightness vector, COSD

average straightness vector, COSE

gradient of q, F

minimum and maximum f used to normalize f, FMIN,FMAX

normalized function of f, FB

subscript indicating the current node in adaption direction, I

total number of points in i and j directions of input mesh file, IMAX,JMAX

indices indicating start of adaption domain in i and j directions, IST, JST

indices indicating end of adaption domain, IEND,JEND

subscript of the current stepping line, J

a local subscript relating to node i, L

input value indicating number of stepping lines before

full adaption, MGSTEPS

number of points in the adaption line, NIPTS

number of lines in the stepping direction, NJPTS

value ofj at full adaption line f(rag), CNM

orthogonality vector, COSN

input flow-field variable (p, pu, pv, e, P, M) , Q

average of _, and _-l, COSR

streamwise length, SS or SN

vector representing s, COSS

maximum value of s on line j, SMAX

value of streamwise length used in torsion computation, SP

8i+1 -- 8i, DS

requested minimum and maximum grid spacings, DSMIN,DSMAX

computed minimum and maximum grid spacings

torsion force

total torsion vector, COST

proportion of b"and ff used to compute g, TN

vector normal to j - 1 line, COSU

input grid mesh, (X,Y) globally and (XJ,YJ) locally

input magnitude of torsion control parameter, CLAM

tension (weighting) parameter, WEIGHT

computed weighting on w, WT

torsion related parameter, TAU

26

2.7 List of Major Variables

This section contains the list of variable names (in alphabetic order) used in the SAGE code. l_xxzal

variables that contain only intermediary values are not listed. The format is given as:

Variable name(dimension) /rl/r2/brief description

rl describes what type of variable--input, local, parameter, or name of common block.

r2 lists routine(s) where variable is initialized.

A

AA(IJD)

AAP(IJD)

ACT

ADD

ALPHA

AMACH(IJD)

B

BB(IJD)

BCONV

BJ1

CLAM

CLAMW

CNM

CONV

COSB(IJD,2)

COSD(IJD,2)

COSE(IJD,2)

COSS(IJD,2)

COST(IJD,2)

COSU(IJD,2)

CRX,CRY

CT

CTM

DAP

DLENGE

DLENGS

DMINSDB

DS(IJD)

DSM(IJD)

DSMAX

DSMIN

/COM2/INITIAL/A used to compute to

/IOCal/SOLUT/coeff. of si-1 in solution matrix

/COM9/CROSSV/s - s_

/local/TORSION/final modified Ct

/COM13/input/if set, add grid points

/COM 12/input/information only for PLOT3D

/local/FBAR/Mach number

/COM2/GETB/B used to compute to

/local/TORSION/coeff. of si in solution matrix

/local/GETB/convergence criteria for B iteration

/local/GETB/value of B along j - 1 line

/COM 10/input/2_, magnitude of torsion

/COM 10/SETUP/modified CLAM

/local/SETUP/,k modifier when MGSTEPS¢ 0

/COM 15/INITIAL/general convergence criteria

/local/TORSION/direction cosines of b', normal to j line

/local/SETUP/temporary vector, d

/COM7/SETUP/straightness vector, 6"

/local/SETUP/streamwise vector, _"

/local/TORSION/torsion vector,

/COM7/SETUP/if, normal to j - 1 line

/local/SETUP/coeffs. of _', used to compute ff

/COM 10/input/Ct, direction of torsion vector

/COM 10/SETUP/modified Ct

/argument/CROSSV/length DA' for s' calculation

/COM6/DLENG/A s computed for end-edge modification

/COM6/DLENG/A s computed for start-edge modification

/local/GETB/0 rein(A s)/OB

/COM3/FBAR,LINE 1,SOLUT/s_. - si_ t

/COM6/GETDSM/wt, modification to to to maintain mesh

spacing

/COM6/FBAR/A sm_ from RDSMAX

/COM6/FBAR/A smi,_ from RDSMAX

27

DSP(IJD)

F(IJD)

FB(IJD)

FF(IJD)

FMAX,FMIN

FSMACH

ICROSS

IEND

IINVERSE

IJD

IMAX

INDQ

INTER

IQ(6)

IST

JEND

JINVERSE

JMAX

JST

JSTEP

LENDADD

LSTADD

MARCH

MAXITS

MG1

MG2

MGSTEPS

NADS

NDIM

NEDGE

NFILT

NFLAG

NITG

NIPTS

NITQ

NJPTS

NOUP

NOMORE

OK

ORTHE

ORTHS

P1,P2,P3

PRES(IJD)

Q(IJD,IJD,NDIM)

RDSMAX

/local/TORSION/,s' i -. s'i_ 1

/COM2/FBAR/flow gradient, f = Oq/Os, at input s

/COM2BNTF/], normalized f at current 8

/Iocal/SOLUT/cocff. of RHS of solution matrix

/local/INTF/max. and min. f

/COM 12/input/information only, for PLOT3D

/argument/CROSSV/index for interval location of s'

/COM4/input/last node along i in adaption domain

/COM 13/INITIAL/implies that adaption along decreasing values of i

/dinaension/parameter statement/currently set at 232

/COM4/input/no. of points in physical domain, i direction

/COM5/input/index for q for adaption variable

/COM 11/input/order of interpolation, 2 or 3

/COM5/input/related to INDQ, proportions q adaption function

/COM4/input/first node ahmg i in adaption domain

/COM4/input/last node in j adaption domain

/COM 13/I NITIAL/implies that adaption along decreasing values of j

/COM4/input/no. of points in physical domain, j direction

/COM4/input/tirst node in j adaption domain

/COM13/input/indicates whether adaption steps in i or j direction

/argument/input/start of ADD range

/argunaent/input/end of ADD range

/COM 13/input/if set, interpolation continues up to physical boundary

/COM 15/INITIAIJ max. no. of iterations for convergence

/COM9/INITIAL/tlag for NEDGE at i,t

/COM9/INITIAL/flag for NEDGE at i,,_

/CO/Vl 11/input/no. of steps before full adaption occurs

/argument/MAIN/index on number of adaptions

/dimension/paranmtcr statement/used for input q, currently set to 4

/COM9/input/initiates side-edge boundary overide

/COM 11/input/no. of passes for smoothing data

/COM 11/INITIAL/indicates left- or right-handed coordinate system

/local/OUTPUq7 unit numbers for output grid file

/COM4/INITIAL/total no. of points in computation domain, i direction

/local/OUTPUT/unit numbers for output q file

/COM4/INITIAIJ total no. of points in computation domain, j direction

/COM 15/input/prevents adaption

/argument/IN ITIAL/when no more input datasets, ends program

/argument/SOLUT/indicates if solution available

/COM 16/input/remove orthogonality at outer boundary

/COM16/input/remove orthogonality at initial boundary

/argument/LAGCOF/coeff. of Lagrange polynomials

/local/FB A R/pres sure

/COM l/input/flow-field variables

/COM5/input/relative value of A ,s,,,a_

28

RDSMIN
RE
SAVE
SMAX
SMS(IJD)
SN(IJD)
SNM(IJD)
SP(IJD)
SPC
SS(IJD)
TAU
TIME
TN
TNM
TSPC
WDE
WDS
WEIGHT(IJD)
WT(IJD)
WTSUM
X(IJD,IJD)
XJ(IJD)
XJI(IJD)
Y(IJD,IJD)
YJ(IJD)
YJI(IJD)

/COM5/input/relative value of A s_,_

/COM 12/input/not used, PLOT3D variable

/COM 13/input/flag to suppress output

/COM6/FBAR/max. value of s

/COM3/FBAR/midpoints of A s

/COM3/FBAR/current s array along j line

/COM3/UPDATE/converged s array along j - 1 line

/COM9/TORSION/s', intersection of torsion vector and 3 line

/IOCal/SOLUT/),w,_,_ used in torsion term

/COM3/FBAR/initial value of s along j line

/local/SOLUT/'r, torsion parameter

/COM 12/input/not used, PLOT3D variable

/COM 10/INITIAL/proportion of b"to ff

/COM 10/SETUP/TN modified for boundaries

/local/SOLUT/final torsion term in solution equation

/COM2/WTEDGE/weighting factor used when NEDGE set at end boundary

/COM2/WTEDGE/as WDE, but at initial boundary

/COM2/LINE 1,SOLUT/w, tension parameter

/COM6/GETDSM/wt, correction to w

/Iocal/GETB,LINE 1,WTEDGE/_ 1/w

/COM1/input,UPDATE/input grid points, i direction

/COM8/FBAR/X at current SN

/COM8/UPDATE/X at SNM

/COM 1/input,UPDATE/input grid point, j direction

/COM8/FBAR/Y at current SN

/COM8/UPDATE/Y at SNM

3. EXAMPLES

This section contains several sets of examples to familiarize the user with the adaptive-grid process.

Each example includes plots of the initial grid and flow-field contours, the input-control-parameter file used

to adapt the grid, the resultant adapted grid and a discussion on the choice of control parameters. The first

example in case 1 also gives the file assignments. In addition, two of the cases show the improved flow

solution obtained from the flow solver using the adapted grid as input.

Case 1. Flow in a Supersonic Inlet

Figure 9(a) shows the 101 x 79 initial grid (assigned as input file INLET.GRD) for an inlet flow-

field problem. Flow is from left to right and a shock emanates from the upper-wall corner, reflecting off the

29

lowerwall. In addition,anexpansionfanoriginatesfrom thedownstreamupper-wallcornerandinteracts
with thereflectedshock.The computedsolution(INLET.FUN),generatedby the flow solverusingthis
initial grid, is shownasdensitycontoursin figure9(b). TheSAGEcodeis nowrun to createa newgrid
thatis moreadaptedto this solution,i.e., thegrid pointsareredistributedwith respectto a chosenflow-
field variable(in this case,density)andoutputto thefile INLET.XY1 assignedto unit 10. SAGEalso
interpolatesthecompleteflow-field solutiononto thesenewgrid pointsandoutputsthis file (INLET.Q1)
to unit 11. The updatedfiles will subsequentlybe input into the flow solver to producemoreaccurate
solutions.Severalexamplesof grid adaptionaregivenfor this inlet problemto demonstratetheeffectof
thecontrolparameters.

Example 1: Single pass, stepping in j direction.

mands for this example on a DEC VAX computer:

The following are the job execution corn-

$ASS CONTROL.INP FOR005

$ASS MESSAGE.OUT FOR006

$ASS INLET.GRD FOR007

$ASS INLET.FUN FOR008

$ASS INLET.XY1 FOR010

$ASS INLET.Q1 FOR011

CONTROL.INP contains the user-specified parameters. Until the user is familiar with the basic

parameters, the first attempt may be an input-control file with no parameters; i.e., all default values are

used. The choice of all default values for this example case is shown in figure 9(c). The grid has been

more evenly spaced and there is a slight clusterering of points around the shock on the lower-wall boundary

but the remaining grid lines are not adequately adapted to the flow features. This implies that the torsion

parameter is too large and is overriding the local tension term, preventing the tension springs from pulling

the points to the high-gradient regions. In addition, the minimum grid spacing is too large.

The input-control file was therefore chosen to contain:

$namel rd_min = 2, clam = .O01, nedge = 15

Only three parameters are input: the minimum allowable grid spacing, the magnitude of the torsion

term (an order of magnitude less than the default value), and a request for edge control (which frequently

needs setting). The remaining parameters retain their default values, signifying that the full grid will be

adapted, density is the adaption variable, and stepping is in the j direction. On completion of the execution,
the MESSAGE.OUT file contains "ADAPTION 1 COMPLETE".

The result of this adaption is shown in figure 10(a). It can be seen that, since adaption began along

the lower surface (jst = 1), the redistributed points cluster around the point of reflection on this line.

However, points do not become sufficiently clustered at the comer shock and at the start of the expansion

wave region on the upper surface. This is to be expected, since the adaption on the initial line is a 1-D

solution and will pick up features quite clearly. However, as stepping continues, the features on subsequent

lines get "dampened" by the torsion (i.e., smoothness) control.

30

Example 2: Adaption with backward j steps. This example maintains the same parameters

as example 1, except that the upper surface is chosen as the initial adaption line, i.e., jst = 79 ,je_d = 1.

Figure 10(b) shows the result of this adaption. In this case, the upper surface is more clearly adapted, and

the point of reflection on the lower surface is more spread out. Comparing these two examples indicates

quite clearly that the starting line has a strong effect on the resultant adapted grid, and for some applications

it may need to be chosen carefully.

Example 3: Adaption in i direction. This example shows the very different grid generated

when the adaption is performed by stepping in the i direction (]step = .false.). Based on the experience

obtained from the first two examples, adapting from right to left will produce a better grid: there are no

gradients on line ist = 1 to adapt to. Hence, the input control file was chosen to contain:

$nameljstep = .f ., ist = lOl,iend = 1,rdsmin= .25, clam = .O01,nedge = 15

Figure 10(c) shows the result of this adaption. Not surprisingly, the reflected shock region on the

lower surface is not "captured" by this adaption, and thus this grid is not as suitable as those shown above.

This demonstrates that the choice of stepping direction is important in producing a desirable grid.

Example 4: Effect of changing control parameters. This example is actually a collection of

examples that show the effect of varying the control parameters clam, Ct, rdsmax, and rdsmin, Fig-

ure 11(a) shows an adapted grid using "baseline" values. These are the same as the default values in the code

with the exceptions of clam = .001 and adaption proceeds from top to bottom (i.e., jst = 79, jend = 1).

Figures 1l(b) through 11 (f) are grids adapted by changing just one of the baseline parameters. Figure 1l(b)

shows the result with clam = .01, and it is immediately obvious why this code default value was not cho-

sen as the baseline value for these comparison cases: clam is too large to allow any of the flow features

to be "captured" by the adaption. Figure 11(c) shows the case for clam = .0001, and this smaller value

produces a grid with points more clustered around the shocks. Figures 1l(d) and 1 l(e) show the effect of

the Ct parameter: Ct = 1 0 in figure ll(d), emphasizing straightness, and Ct = .0 in figure ll(e), em-

phasizing orthogonality. The latter shows how the orthogonality term dampens the adaption for this case:

we are requesting orthogonality to the already parallel / lines. Finally, the effect of changing the minimum

and maximum allowable grid spacing is shown in figure ll(f), where rdsmax = 4 0 and rdsmin = .25

are used. This mesh size control is only a factor of 2 different from that in the baseline example (fig. 1 l(a)),

but significantly densities the spacing in the shock regions.

Example 5: Two-directional adaption. Two-directional adaption is created by adapting in

one direction (e.g., stepping in j) and then adapting in the other direction (i.e., i), using the first adapted

grid as input. The resultant grid will depend on the order of the stepping direction. Two passes (i.e., two

sets of input control parameters) were made to produce the adapted grid shown in figure 12(a). If both

these passes are made during the same execution run (not to be recommended for a first attempt), then it

is necessary to assign additional files for the output:

$ASS INLET.XY2 FOR012

$ASS INLET.Q2 FOR013

Data will therefore be output for both passes, unless the SAVE parameter is set to false.

31

The control file for this example contains:

$namel clam = .O01, rdsmin = .2,hedge = 15

$nameljstep = .f ., ist = 101,lend = 1,clam = .O01, rdsmin = .25,hedge = 15

The first pass steps in the j direction and uses the same input control parameters as example 1, and thus

produces the adapted grid shown in figure 10(a). The second pass steps in i, with the same parameters as

example 3. Note that any parameters that remain unchanged for the two passes still need to be defined in

the control file, since the code restores all default parameters at the conclusion of each pass.

The control file used to produce figure 12(b) contains the same parameters, but the adaption order is

reversed. That is, the first pass steps in the i direction and the second pass in the j direction. Although the

controls for the second pass are the same as example 1, the input grid is different, giving a quite different

adapted grid. The difference between figures 12(a) and 12(b) is obvious. Although this example shows

that both adaptive sequences do adapt the grid, it should be noted that it is also possible that one order of

adaption will produce a completely unacceptable result, while the reverse is quite suitable.

Example 6: Flow solution using adapted grid. Figures 13(a) and 13(b) demonstrate the im-

proved flow-field solution obtained when the flow solver is reran using an adapted grid as input. The

adapted grid shown in figure 13(a) was obtained by requesting a significant amount of clustering in the

high gradient regions: rdsmax = 4.0, rdsmin = .25, and clam = .0001. In addition, adaption begins

at the upper-wall surface. This grid and the interpolated flow-field variables were input to the flow solver,

producing the flow solution (shown as density contours) seen in figure 13(b). The improvement in the

resolution of the incident and reflected shock is obvious when compared to the initial solution shown in

figure 9(b).

Case 2. Hypersonic Blunt-Body Flow

The second case contains two examples that demonstrate the effect of the CLAM and CT parame-

ters. Figures 14(a) and 14(b) show an initial grid (32 x 32) and corresponding density flow-field contours

for a hypersonic blunt body. The j direction marches out from the surface to the free-stream boundary, and

the i direction marches along the body starting at the lowest point. This is a simple 1-directional problem

with the shock shape aligned with the grid. The outer-side boundary is curved (when marching in the i

direction) and the default values of clam = .01 and Ct = .5 will prevent the adapted grid lines from

"turning" sufficiently at this edge, giving either a false densing of points at the outer side boundary or,

possibly, a critical error message. In this situation, two remedies are available. CLAM can be decreased,

hence de-emphasing the effect of torsion and thereby allowing the tension coefficient to "pull" the nodes

toward the shock wave. Alternatively, the orthogonality restraint can be removed by setting Ct = 1.0.

Figure 14(c) shows the result of setting clam = .001 and retaining all other parameters at their default

value. The adapted grid obtained by setting Ct = 1.0 is very similar and is not shown here. The following

are the two input-control files:

$nameljstep=.f,clam=.001$ and $nameljstep=.f.,ct= 105

32

Boththeadaptedgridsshowtherequiredresult,i.e., theclusteringof grid pointsacrosstheshockregion.

Case 3. Blunt-Body Shock Impingement Problem

The third case introduces the use of IQ and ORTHE parameters. Figure 15(a) shows the input grid

of a cowl/lip shock interaction problem. The j direction marches from the body surface to the outer free

stream and the i direction marches from the lower point of the sphere. The flow-field contours of both

density (fig. 15(b)) and Mach number (fig. 15(c)) are given, since the adaption flow-field parameter is a

combination of the two. The blunt body shocks, impinging shock, and shear layers represent a complex

flow that requires adaption in both directions to adequately capture all the flow features. Figure 15(d)

shows the adapted grid produced by the following 2-pass control file:

$nameljstep = .f.,ist = 91,iend = 1,indq = O,iq(1) = 2,iq(6) = 1,

rdsmin = .25,ct = .7, clam = .005,hedge = 25

Snamel indq = O,iq(l) = 2, iq(6) = 1,rdsmin = .3,orthe = .f.$

The first pass steps in the i direction, starting from the topmost boundary. The parameter indq = 0

indicates that IQ will be input, and in this case two-thirds of the density function and one-third of the Mach

function will be combined to become the adaption variable. As explained in case 2, the curvature of the

outer boundary requires increasing CT. Setting _dge = 2 requests that only the side-edge boundary at

j = I be treated. The second pass introduces the use of the ORTHE variable: stepping occurs from the

sphere wall to the outer curved boundary, where the default would turn the grid to be normal to this outer

boundary. ORTHE overrides this and allows the adaption to occur naturally.

Case 4. Hypersonic Inlet (Zonal Adaption)

Figures 16(a) and 16(b) show the initial grid and density contours for a hypersonic cowl/lip inlet

problem. This is a more complex case and requires dividing the adaption domain into zones--the blunt

body region and the rectangular inlet region. The upper wall is the j = 1 line and the outgoing channel

region (on the right side of the diagram) is the i = 1 line. Five adaption passes are required to create the

final adapted grid shown in figure 16(c). The input control file consists of

$namel rdsmin = l.O,rdsmax = 1 05

$nameljstep = .f ., rdsmin = .2,hedge = 15

$namel ist = 70 $

$nameljst = 32,jend = 1,lend = 71, rdsmin = .25, clam = .02, hedge = 15

$namel iend = 85,jst = 19,jend = 1,clam = .002,hedge = 1,mgsteps = 55

The first pass spreads out the i grid lines evenly; the original grid points were more densely dis-

tributed in the curved section, leaving fewer grid lines in inlet area. The second pass steps in the i direction

33

andadaptseasilythroughouttheentiregrid.Thethird, fourth,andfifth passesperformtheadaptionin the
j direction. The very different flow features in the blunt-body region (blunt-body shock) compared to the

features in the inlet region (Mach stem and reflected shocks) indicate dividing the adaption domain into

these two zones: i < 70 and i > 70. Only the blunt-body section (i > 70) is adapted in pass three,

with all default-control parameters. The adaption in the inlet domain starts at jst = 32 in order to pick

up the Mach stem along the lower wall. After stepping through the triple-point region (the intersection of

the cowl shock and the reflected normal shock), the redistributed points do not spread out sufficiently, so

the adaption was stopped at line 19 and a fifth pass is started at line 19 with a decreased value of CLAM.

Since this pass starts internally to the original adaption, it is necessary to set the MGSTEPS flag in order

to merge smoothly from the already adapted region.

Case 5. Axisymmetric Plume Flow

This final case is presented to indicate the powerful effect of the adaptive grid process. Figure 17(a)

shows the initial grid and computed solution (in Mach contours) of an axisymmetric nozzle-plume flow.

This initial solution has not developed sufficiently to capture the final flow features: the outer shear layer,

barrel shock, Mach stem, reflected shock, and the triple-point shear layer. Three iterations (through both

adaption and flow solver) were made to produce the final adapted grid and solution shown in Figure 17(b).

The definition of the flow features is greatly improved. Figure 17(c) points out the accuracy of the final so-

lution: the lower picture is a shadowgraph of the actual experiment and is almost mirrored by the computed
solution.

REFERENCE

Nakahashi, K.; and Deiwert, G. S.: A Self-Adaptive-Grid Method with Application to Airfoil Flow. AIAA

Paper 85-1525, July 1985.

34

torsion

springs

tension

-------,0---2

initial grid

_-4111

springs

' i

: 1 k

marching direclio
first adaption

g_

4,°

Figure 1.- Splitting of 2-D adaption into two 1-directional adaptions.

i-li . i+1

jend _i _

A' J

Figure 2.- Adaption line j, showing tension and torsion springs.

35

/_vL, /,1
• A(s) D

j-2

_ i,j-2

Figure 3.- Detail of point (i, j) showing torsion vector, t.

i_k\= f (t n ,O ,B)
i+l,j_l_ j.. -,

_ i,j-2

Figure 4.- Normal components of torsion vector.

36

(1 ,12)

jend., ,'r --
=12

.E o

E_5

jst=4

(1 ,1)

III1
I I lll
I I 11'

ist=3

till
I I I I
I I I I

(15,12)

I '
side-edge

.4 / __ boundary

•_l--mg- 5

i
(15,1)

iend=12

marching boundary

Figure 5.- Physical and adaption domains.

side-edle boundary

Figure 6.- Control of side-edge spacing.

37

s MIN

E
if)

1)

B B

rged B

initial B=1.0

Figure 7.- Iterative calculation of B.

_ I+l,j

I,j_A' i

/%1

i,k _

i,j-1

Figure 8.- Intersection of general vector (, with streamwise vector.

38

ORiGiNAL PAGE IS

OF POOR QUALITY

(a) (b)

¸¸i_s '_I

(c)

Figure 9.- Flow in a supersonic inlet. (a) Initial grid; (b) density contours; (c) adapted grid using all default

parameters.

39

(a)

Z_

(b)

(c)

E , -4 -_-.....

!",i !

ttt!!t!f!

e+ _e *+÷H
ttltttJfJ

Figure 10.- Effect of adaption direction. (a) Adaption from bottom to top; (b) adaption from top to bottom,

jst = 79, jend = 1 ; (c) marching in i, from right to left, jstep = false,ist = 101 ,lend = 1.

40

(a) (b)

;111

11I

:;I
:tt

:TEt

:;+_

(c)

Figure 11.- Effect of control parameters. (a) "Baseline" adapted grid,), = .001, jst = 79, jend = 1 ;

(b),_= O1;(c) X=.O001.

41

(d) (e)

(f)

Figure 11.- Concluded. (d) Ct = 1.0 ; (e) Ct = .0 ; (f) A smi, = .25, A sma_ = 4.0.

42

(a)

(b)

Figure 12.- 2-D adaption. (a) Marching in j followed by marching in i; (b) marching in i followed by j.

43

(a)

(b)

\

\
°

\

, i

Figure 13.- Final solution using adapted grid as input. (a) Best adaption, A s,,,i, = 25, A s_,_:_ = 4.0,

,_ = .0001 ; (b) solution density contours, using "best" adapted grid.

44

(a) (b) (c)

Figure 14.- Hypersonic blunt body. (a) Initial grid; (b) initial flow solution; (c) adapted grid,), = 001.

(a) (b) (c) (d)

Figure 15.- Blunt-body shock impingement problem. (a) Initial grid; (b) initial density contours; (c) initial

Mach contours; (d) adapted grid.

45

(a)
(b)

(c)

Figure 16.- Hypersonic inlet, zonal adaption. (a) Initial grid; (b) initial density flow contours; (c) adapted

grid.

46

ORIGP',IAL PAGE IS

OF pOOR QUALITY

(a)

(b)

(c)

Figure 17.- Axisymmetric plume flow. (a) Initial grid and solution showing undeveloped flow features;

(b) final adapted grid and flow solution obtained after several iterations; (c) comparison of computed so-

lution with experimental shadowgraph results.

47

Na|o_al Aefonaubc$ and

Spac_ Adrnlndsl_abon

1. Report No.

NASA TM-102198

Report Documentation Page

2. Government Accession No.

4. Title and Subtitle

A Simplified Self-Adaptive Grid Method, SAGE

7. Author(s)

C. Davies" and E. Venkatapathy _

3. Recipient's Catalog No.

5. Report Date

October 1989

6. Performing Organization Code

8. Performing Organization Report No.

A-89156

9. Performing Organization Name and Address

Ames Research Center

Moffett Field, CA 94035

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

10. Work Unit No.

506-40-11

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Point of Contact: G.S. Deiwert, Ames Research Center, MS 230-2, Moffett Field, CA 94035

(415) 694-6198 or FTS 464-6198

"Sterling Software, Palo Alto, California

*Eloret Institute, Sunnyvale, California
16. Abstract

The fommlation of the Self-Adaptive Grid Evolution (SAGE) code, based on the work of Nakahashi

and Deiwert, is described in the first section of this document. The second section is presented in the form

of a user guide which explains the input and execution of the code, and provides many examples.

Application of the SAGE code, by Ames Research Center and by others, in the solution of various flow

problems has been an indication of the code's general utility and success. Although the basic formulation

follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use

of the self-adaptive grid method for single, zonal, and multiple grids. Modifications to the methodology

and the simplified input options make this current version a flexible and user-friendly code.

17. Key Words (Suggested by Author(s))

Computational fluid dynamics

Grid adaption

18. Distribution Statement

U nc]assified-Unlimited

Subject Category - 61

19. Security Classif. (of this report)

Unclassified

20. Security Classif (of this page)

Unclassified
21. No. of Pages

49
22 Price

A03

NASA FORM 1626 OCT86

For sale by the National Technical Inlormation Service, Springfield. Virginia 22161

